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ABSTRACT: The steady state flow through porous rigid media is analysed. Gov
erning equations and boundary conditions are set up and discussed. Variational 
methods and finite element approach are described and the solving system of 
equations for quadrilateral networks of triangular linear condensed elements is 
obtained. Non-homogeneity and anisotropy are discussed. Further discussion on 
the finite element techniques and on the convergence of the numerical process. 
Some sugestions for improvement and quick determination of the exit point as a 
preliminary step to obtain the free surface are made, in order to reduce the 
total number of iterations. After the presentation of some examples, a rigo
rous formulation of the problem for heterogeneous media is put forward and since 
it cannot yet be practicized, the fundamental points for an approximate solution 
with a small number of iterations is reviewed. 

RESUME : On analyse l'ecoulement a travers des milieux poreux rigides. On eta
blit et discute les equations qui gouvernent le phenomene et les conditions sur 
les frontieres. On presente la methode variationnelle avec approximation par des 
elements finis et on obtient le systeme d'equatlons qui resoud le probleme pour 
des reseaux quadrangulaires d'elements triangulalres lineaires, condenses. On 
discute la non-homogeneite et l'anisotropie, Jes techniques des elements finis 
et la convergence du processus numerique. Etant donnee l' importance de la posi
tion du point de sortie pour la fixation de la surface libre de l'ecoulement, 
une suggestion est faite pour la determination de ce point. Apres la presenta
tion de quelques exemples, on donne une rigoureuse formulation du problame pour 
les milieux heterogenes et lorsqu' il n'est pas possible de la pratiquer, on 
avance les points a retenir pour une solution d'approche, avec un petit nombre 
d'iteratfons. 

RESUMEN : Se analiza el flujo permanente, en medios porosos rigidos. Se estable
cen y discuten las ecuaciones basicas y las condiciones en los limites. Se des
criben los metodos variacionales y las aproximaciones por elementos finltos ; se 
obtiene la soluci6n a los sistemas de ecuaciones para mallas cuadradas de ele- · 
mentos triangulares lineales condensados. Se discuten los problemas de la no
homogeneidad y anisotropfa, de las tecnicas de elementos f.initosyde la conver-
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gencia del proceso numerico. Se hacen algunas sugerenclas para mejorar la de
terminaci6n raplda de la posici6n del punto de salida, como un paso para obte
ner la superficle piezometrica, y poder reducir el numer.o total de iteraciones. 
Por ultimo, tras mostrar algunos ejemplos, se presenta una formulaci6n rlguro
sa para los medlos heterogeneos, y, aunque no ha podido todavra ser practlcada, 
se adelantan los puntos fundamentales para una soluci6n aproximada con un nume
ro reducldo de iteraciones. 
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1 - INTRODUCTION 
The water percolation through porous media is governed by the well knwon Darcy's 
law. This experimental law states ~he proportionality between the apecific flux 
vector .! and the hydraulic gradiente i• 

! = IC ~ :::: - I< j"...l f (1) 

The specific flux vector q is the flow rate per unit total surface through which 
flow takes place. Its components in cartesian x,y,z coordinates, are qx,qy,q 
respectively. The hydraulic gradient i, is the piezometric head loss or enfrgy 
loss due to friction per unit of length of percolation. Its components- are 

"~::-~~"' • '~:: -d//4, -t~: -'¥ft.t. 
When the medium is homogeneous and isotropic, in relation to percolation, K is 
a scalar constant, the permeability, and we may write (/) as: 

(1 ') 

For the flow in the direction of the unit vectors we have 

t)= 'f.;== -K1.-df--i=-/:.,~ 
- (! ~,:I 

(2) 

For homogeneous but, anysotropic media instead of a scalar K there exists a 
permeability matrix [K) such that 

1 = [K-l ~ ::: - [K-10,,.,.Jt) <3 '> (3) 

K is symmetric. 

As a consequence of anysotropy the vectors q_and i are noncolinear except in ce.!. 
tain directio~s of space x1 ,y1 ,z1 , the principal directions or eigenvectors of 
the matrix (KJ. This means tfiat the directions of streamlines do not coincide 
with those of the normals to equipotentials (tp•constant). 

Given the K .. of matrix K the principal directions of permeability can be obtain 
ed by well fi.rtow methods(e.g.Bear,1972),Ifl,2,3 are the principal directions of 
permeability and K1 ,K2 ,K3 

the eigen vectors-of [K J or principal permeabilities, 
the components of the specific flux vector q ,q ,q satisfy the equations 

X Y Z 
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q = I<. <.' 'J i J 
(5) 

If the medium is non-homogeneous the permeability K would be a function of the 
space coordenates x,y,z. Hence instead of stating the relationship (') we could 
state the following 

.. ,=-o"""-(k~) (9) 

where K+-f would be the velocity potential. 

However is an erroneous form of stating Darcy's law (Bear, 1972), since in 
that case 

1= -(1~1<.J 4- tfvdK, <9 ') 

Therefore for~ •constant we could have flow due solely to variation of permeabi 
lity which is impossible. 

2 - GOVERNING EQUATIONS FOR STEADY FLOW 
Mass conserv~tion for a control volume imposes to the steady flow of a incom
pressible fluid through a rigid porous medium, the following relationship: 

(10) 

where Q is the externally applied flux, e.i., the volume of fluid externally ad 
ded per unit of time and per unit volume of global flow space. 

Since 1 c.:fK!·3~cp 
We have 

J,-v {[K]. ~ f ~ + Q. = o, ~1(K,J· 1~.) + ci. ~ o, 
A.JJ = .,,J..,3 

(11) 

If x,y,z are the principal directions of permeability and x1•x, x2-y e x3•z, 
(H) becomes 

(12) 

For the solution of steady state or permanente flow problems we have to add to 
(II) or (/j,) boundary conditions. 

3 - BOUNDARY CONDITIONS 
There ~re th~ee kinds ?f boundaries: s1 and s4 (AB, ED and ~C, Fig.l) where the 
potential is prescribed, lp •constant., s2 (AB) where flux u prescribed and 
s3 (BC) where the potential and the flux are prescribed. 

A problem where there are conditions of potential type is called Dirichlet 
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boundary value problem. 

Conditions of prescribed 
flux refer to a diferent 
type of problem: the Neu 
mann boundary value pro-= 
blem. 
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The problems as that of 
Fig • .1 where there are two. 
or three types of boun
daries is called mixed 
boundary value problems. 

On surface BC (S3) both SL 
potential and flux are w,.,;.~,.i,..=.,...,..,...,~.,.,-r.~.,.,-rr?''Tl;:;,:;.-,...,..,...-:~="".~'Tl...-:=ri.~r,~ 
prescribed. On.the other 
hand the boundary itself 
is "apriori" unknown. The potential on the surface BC, called phreatic surface, 
must equalize the elevation had, i.e., 

<p (H,~) = 'j (13) 
and the normal component of the specific flux vector q must be null, i.e.: 

9 = r-; = o 
t... -

(14) 

where n is the unit outward normal to s3 • 

In isotropic media the condition (14) becomes 

,~4'-1 · ,; = ~ = 0 (15) 

On impervious boundaries s2 (AD), the prescribed conditions are also {15) for 
isotropic media and (14) for anisotropic soils. 

The value of potential on s1 (AB) is ?•const•H1 and on ED is<f •H2• On s4 (see
page face CE), <p •y. 

Points such that C, E, D, Band A COlmK>ll to two kinds of boundaries are singu
lar points. For correctness of the solution they must be treated in convenient 
way (Figs. 2 and 3). 

~~ 
. _:J vertical 

_:,r._ 

(a) (b) (c) 

Fig. 2. Intersection of a phreatic 
~= ~ 

media) 

(a) (b) (c) 

Fi~. 3. Intersection of a µhreatic surface with water table (upstream) 
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We notice that the phreatic surface is tangent to the vertical except when the 
merging angle /J> ,½-, in which case that surface is tangent to the seepage face 
(Fig. 2.b), I~ the case of the intersection with the up steam water table the 
phreatic surface is tangent to water table except in the case of/( f (Fig. 
3,c), For that case the phreatic line is tangent to the normal t the slope and 
may bend upwards (~arth eubankment) or downwards (ditch bank). 

4 - ORDINARY METHODS OF SOLUTION 
Analytical solutions on flow through porous saturated media without phreatic 
surface has been developed using the potential theory (Muskat, 1937, Polubarino 

. -va-Kochina, 1962). This type of approach is indicated for homogeneous aquifers 
and a wide range of shapes can be solved by maping techniques, However, for com 
plicated geometry and boundary conditions as well as for non-homogeneous media
and/or nonlinear flow, analytical methods are unsuitable. 

Those difficulties have led to the development of numerical methods that permit 
the treatment of complex boundary conditions and a first approach to problelllS 
of heterogeneous anisotropic media. 

Shaw and Southwell (1941) applied the relaxation method to the percolation · 
through porous material and Finnemore and Perry (1968) adapted that technique 
to the use of computers. Other finite diference solutions have been obtained 
by Jeppson 1966, 1967, 1968 a, 1968 b, 1968 c, 1968 d, 1969 • Although finite 
diference techniques allow to deal with complex boundary conditions and phrea
tic surface problems as well as with anisotropy and heterogeneity the system 
of linear equations for solution in a computer cannot be easily set up, For 
these reasons Jeppson as limited his study to homogeneous media and have taken 
the cartesian coordinates as functions and potential~ and stream -./-as indepen
dente variables. 

More recently finite elements approach has had wide spread application to field 
problems of all kinds due to easy fitting to boundary of complex geometry and 
to easy formulation and set up of the system of linear equations to which the 
problem is reduced. 

Hundreds of pspers,various treatises (see for ex. Zienkiewicz 1971, Desai 1972) 
have been writen on finite elements methods most of them relating its applica
tion to stress-strain problems in elastic media. Although an easy adaptation of 
elastic solutions can be done to fluid flow problems, a large number of papers 
have been writen also on finite elements applied to fluid mechanics. In particu 
lar free surface flow through porous saturated bodies (Taylor and Brown.(1967); 
Finn (1967); Volker (1969); Eienkiewicz et al. (1966); Witherspoon et al.(1968); 
Neuman and Witherspoon (1970); France et al. (1971); Desai (1972 and 1976); 
Martins and Vargas(l976}; Rui Correia (1977), etc.). 

In what concerns phreatic surface problems a dificulty arises due to the fact 
that the numerical process must generate not only the values of the potential 

830 



SlAMOS-78. Granado (Espana) 

at the network points and rate of flow at points of known potential on the boun 
daries,but also the coordinates of the phreatic surface,itself.For this ~eason-a 
trial phreatic surface is fixed "a priori" and changed in each iteration in or
der to fit both boundary conditions at s3 : 

(fJ) and (15) 

Condition (15) is a noflow condition in the direction of the outward normal n 
i.e., the phreatic line is a stream line. 

The changing of the trial phreatic surface can be acomplished either by moving 
the nodal points of the network (Taylor and Brown (1967); Neumann and Wither
spoon (1970), R. Cor-reia (1977)) along their coluims or maintaining a fix net
work (Desai, 1976 a, 1976 b). 

In the method of movable points there are two cases:.the ftrst(Taylor and Brown 
1967; Finn (1967))assumes noflow on the starting phreatic line (condition 
(15)) and calculate the differences~-y. After each iteration, the upper node 
in each coluim is changed in order lo 'meet the condition (13). A new step fol
lows, again assuming noflow at the new phreatic surface F.S •• 

In the second case of movable nodes ( Neuman and Witterspoon (1970); R. Correia 
(1977)) each iteration is done in two steps: in the first step the condition 
(13) is imposed at the assumed phreatic surface and, in the second step geome
try is not changed but the noflow condition (15) is imposed at the assumed 
phreatic surface and on the seepage surface (S4 , Fig. 1) the rate of flow cal
culated in the previous step is imposed at the nodal points. Further,the dife
rences ;-y are evaluated at the nodal points of the phreatic surface and the 
upper nodes changed in order to meet condition (13). Next a new iteration be
gins. 

For the case of fixed network, 
Desai (1976), an initial F.S.is assumed, 
which may include all the domain 
inside the physical boundaries. 
A first solution is obtained 
assuming known potentials at s1 
and s4 and considering nodes of 
s3 as interior nodes which is 
equivalent to assume s3 as a 
stream line. 

In a second step with the poten
tials knwon at nodes, points 

2 of </J•y are search for, along no
dal lines such as AB. Usually, 
those will be found by interpola 
tion between two consecutive nO:: 
des with potentials one less 
than z and the other greater 
than z• The curve joining such 

Fig. 3. Desai 's fixed network 
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interpolated points gives the first approximation for the ES. Next, the ele
ments through which the approximate F.S.pasaes are identified and the specific 
flux Cl.inormal to F.S.is calculated by means of the gradientof theknown potential 
f>and the permability tensor. From the specific flows the flux is calculated at 
the neighbour nodes: the residual flow. Injecting at a further step fluxes at 
the same nodes.but with changed sign a new set of potential ■ i ■ obtaj.ned and 
from them a new position of the ES. The proce11 is continued until ¥:+l do not 
differ"signifficantly"from ,Pi. · 1 

• 
S - DISCUSSION OF THE METHODS OF SOLUTION. 
Although free surface flow is a 1a1ch di1cu11ed ■ubject (Colin W. Cryer (Sept. 
1977) elaborated a bibliography on that subject with 3.300 references], only re
cently Cryer and Fetter (June, 1977) nave proved the existence and uniqueness 
of solutions for the free surface problem. The same author ■ al■o proved the con 
vergence of the numerical solution■ ba■ed on the finite element methods to the
exact solution. Howeve1z_Neumann and Witherspoon relate dificultiea of converge:!!_ 
ce near the exit node lFig. 1) co..m to phreatic surface and downstream see
page face. Although those author■ atribute that dificulty to Taylor and Br11W111 
method the fact is that they theaself■ u■e a correction factor a' and an addi
tional correctionfi to get convergence in their method. Even so they admit 
that sometimes convergence is not reached after 25 iterations and provisions 
are taken in the computer program to atop calculation. Our experience with the 
method also confirms that for anyaotropic media convergence may not be reached 

·when the node C, where phreatic surface meets seepage face,ia badly guessed at,be 
initial step. R •. Correia also refera the number of 32 iterations to get conver 
gence by Taylor's method. In what concernaDesai'a method. the number of iterati
on■ is not published. However,BrOlllbead (1977) discussing Deaai's paper (1976 a) 
call the atention to the singular entrance point B (Fig. 1), In that point, as 
we have seen (Fig. 3c) the phreatic surface is normal to the slope, but thia 
condition as those refered in Fig. 2 for point C of merging between phreatic 
surface and seepage face are valid only for isotropic media. If the aquifer 
i■ anisotropic boundary conditions imat be stated as follows: 

q.i • O (16) 
on iaperviousboundariea or on the phreatic surface. In the anisotropic case 
condition (16) is different from (15) since it involves the permeability tensor, 

.,. I/ --;;, 
•·•'Vl=r..••·-·nJ., ! ') 'IL; 

i.e., 
(17) 

On the other hand stream lines are no more normal to equipotential lines. In 
particular at the entrance point the phreatic surface is not normal to the up
atream free. Since that angle is not constant but varies from·aode to.node of 
the network,it is not always easy to fix "a priori" the angle between the 
phreatic surface and the upstream face at entrance point. Although condition 
(16) associated-to condition (13) on neighbour points of the phreatic line will 
tend to fix the correct orientation of the phreatic surface at the entrance 
point, to ensure a perfect solution at that singular point as well as at the 
down■tream exit point the beat aolution would be to map the actual flow region 
into another according to the ratio of the principal permeabilities A= 1<9/K~ 
If the principal directions of permeability coincide with x -and y axisea the 
governing differential equation (12) bec01Es for homogeneous anisotropic media 
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11 ·u'\6 ?ft -~ -"v - + i::, - + k - - Q. - o 
~ '<1.i:-' 'OJ,. l. 'Zl.t-' -

For two dimensional flow without acrestion Q 

clit 
?Ji 

=O 

(18) 

(19) 

where {i':fK./K.;. If we put x'-x/6 (21), i.e., if we divide the horizon-
tal lengths byffthe anisotropic problem is reduced to an isotropic one. Also 
an heterogeneous' ortotropic layer· ~ 
ed medium (Fig.16) can be transfor-
med in a isotropic one. 

In the case of anisotropy with the' 
principal axies not parallel to the~ 
and ;t_ the problem still can be reduced 
to an isotropic one (Harr, 1962). 

The advantage of transforming the 
anisotropic medium in a isotropic 
one by simple changing the geome- ' I 

' I 

' I 

' ' ' ' ' ' ' I 
I ,· 

' ' ' ' ' I 
try before the numerical process is 
carried out,for free surface flow 
problems,is that the singular points 
where free surface flow meets up
stream and downstream faces can be 
treated in a correct way at each 
iteration (Figs. 2 and 3). And such 
points are the sources of the insta
bility of the numerical process (Neu
man and Witherspoon). 

L----'-----1----._ ___ _,_ __ ...,._ •XX.' 
' Fig.5 Anisotro ic medium contraction when 
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k<,, k' 
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Fig.6 - ~isotropic heterogeneous layered 
medium 
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6 - FLOW THROUGH INHOMOGENEOUS MEDIA 
For nonho111Dgeneous isotropic media Bear (1972) call the atention to the fact 
that 4' ... K (x,7,1.)-'f is not a velocity potential. as we have al£eady seen (no. l) 
it was true h,nce we would have 

1= -,Ylt4(~ip)• -(/.-.,( k (K,r,~}-~-~,.~};-'t-
and for a constant hydraulic head; we would have flow, due only to the variacion 
of permeability,which is physically impossible. Therefore for con.tinuously va-
riable permeability we aist write K" J _ ~,J (

3
") . 1::; - \",),~ ,-., 

However,the lll)St coam>n case is that in which there are two or 1110re ho1110geneous 
-dia separated by surfaces where permeability is discontinuous. Such surfaces 
must be treated as intemal boundaries satisfying certain conditions, e.g.,the 
refraction law for the stream lines. 

Let us consider a flow region divided in 
two subregions R' with permeability IC' 
and R" with permeability IC". We could 
solve the goveming eq. ( 12) for~. 
with I<= Jc.~,,,i::) having a discontinuity 
ever the curve C in the two dimensional 
case (Fig. 7 ). However,the best way is 
to divide the problem in two subproblems 
denoting potential in R' by if,' and in R" 
bl 1.". We then search for a solution for 

C' 

,._ 
"I 

t', f 

Fig. 7 

<f in R I and a solution for 1" in R" 
satisfying their external boundary conditi 
on1< on C' for ~' and C" for</". Also addi= 
tional conditions must be stated on inter
nal boundary C. Such conditions are: o;1 ~ ~ at all points of C 
Also ~ 'i)~ 

f-= ,r• j _i'-4=}·\~ j (1'-j'I.:;, = o jl( u{)'_ "· ;::- K.''.. 'r}f/'. rr. 
"' J'.._ - - j I '/ t (}r,• .) lj Qt'," J, 

(20) 

(21) 

From condition (20) we should have on C : 9(4 1-=- 1 f:' I+ t 
where b would be an arbitrary constant. However, since on the points 
CODIIIOn-to both regions we must have rf'{IIJ=i/#{A) and fl(LJ) := ii'(tJJ. 
is equivalent to have 

(22} 
A and B 
Hence (20) 

(23) 

In the finite element discretization using isoparametric triangular elements 
(Neuman and Witherspoon ·(1970}) if C does not passes through any element;,cond~
tion (23) is fulfilled on all points of C,since equalization of </'and <j•on any 
nodes i and i+l on boundary C implies equalization in every point of C between 
those nodes.--

The same cannot be said from condition (21). This condition must substitute coa
dition (11), valid for internal nodes. Therefore, the procedure cf treating the 
inhomogeneous media as an homogeneous one with onlydifferentpermeabilities fro~ 
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element to element when crossing the boundary C between two media,is incorrect 
and one should expect effects even on the convergence proceBB. 

7 - VARIATIONAL METHOD 
As seen the continuity of flow gives the following governing equation for 1teady 
state: 

~~Kl(~)+~ (KJ~ )+ % (K, ~)+ ti (12) 

with boundary conditions 
f"' f. 0 ~ ( Jllj ...J. E.b in Fig.l) 1 (24) 

i.e., on the boundaries where potentials are fixed. 

l<.l(~~-,,,._-l- kJ~"')+ki.~"'1~+ 1 =o (25) 

on the boundaries where flux q per unit of surface is added or subtrated to the 
system. 

For isotropic media ( K,._::: K1 = k 1 ) and on impervious parts of the boundaries 
(surface s2• AD on Fig. 1), (25) becomes: 

'cJ?' =O • (25' 
0 .. 

For the phreatic surface s3 there are two conditions: 

cp = 1 (13) • 1. = 0. .. 
(13) states that on s1 the potential must be equal to elevation and (14) is 
equivalente of (25) and becomes equal to (25 1 ) for isotropic media, 

According the well-known Euler's theorem of the calcul of variations (12) is 
equivalent to the minimization of the funtional 

w-[r/(><, Y,tJ] = )jf -i { [ K,. t'- + I<, ~'-+ kl ~L 1- q_ <p } J,,/y J, 
"-

where ,I."~ i ,!.= U ~~ ~. 
y;. ~ J( iy r;) I l Dt. 

In fact Euler's theorem states that given the functional 

(14) 

the 

(26) 

t.T L~ (-., Y, t) J = JfJ f (x, 1, i I f (K, 7, l), 'l_(~. Y, i), ~ r~, ~, 1, rjl.(,,, r,i) 7 dx ,, d, 

the necessary an}suficient con,lition to have a minimum over a bounded region R 
is that the unknown function f (x,y, z) satisfies the diffe_wential equation: 

2£_ 3__ 2£__ ~ =O. 

'r)~ 'r)~ 01 ,;y ~ 
~ ) ,!_ 

(27) 

Applying (27) to (26) we get (12). 
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If instead of the integral (26) the following is used _ · 

w-(1) = ff(~ { [ l<k cp: ~ k:, ~; ~ Ill_ 1: 1 -Q_ q, \ dx dJJl_ + Jfs,_1 1 d5,, 
(28) 

it can be shown (Zienckiewicz (1972)) that the minimization of (28)·automatical 
ly includes the boundary condition (25), 

8 - FINITE ELEMENTS APPROACH 
In minimizing(28) by finite elements method the flow domain R is subdivided in 
a number of elelm!nts whose sides form a network. 

Following the above author we substitute the 
number of simple local functions N. (x.y.z). 

unknown function <f (x. y. z) by a 

ed on each element e. 1 Nj (x,y.z). Nk (x,y,z) •••• , defin-

<} = L [,I,,~·, Al._; . ] { 9} j ~ 
L 

such that when x-x. , y-y. • z•z. ; ,J...:. f an4 J.- ,/_ -0 . 1 1 1 , r11. 

(29) 

When Jlr= x._,··, ::, .::j • i =f. · • ,J. = -I and ~ "'.A"A.'"° 
. J I J ) j 

etc •. (the same for the other nodes of element .!:_) 

With this definition it is evident that the integral (28) becomes a summ over 
the number of elements in which the flow region have been subdivided and since 
N., N., Nk are known functions of x,y,z, the functional w will be converted in 
a1fun!tion of· the parameters!'., the values of r/J at the nodes of the network. 
Therefore the problem of min1mlzing a functional w becomes a problem of minimi
zing a function of n variables d, , ;/., • • • ,1, so many as the number of nodes whe 

h 
.

1
.- Y,~, ,r~ 

re t e potent1a 1s unknown. 

To get the miniaa1111 of w(;;) we DlSt have 

Z 1wr 
~ =O:;; /1,J 
r)~ t "Y,· T,· . 

(30) 

where the sumation is extended to all the elements of region Rand to bounda
ries.in what concerns the surface integral of (28). 

etc. and therefore 
(33) 
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Substituting (32) and (33) into (31). we have 

Considering all the nodes of the element i.j.k ••..• we may write in a compact 
form 

where 

L' = ((( ( I( ~,;,.,_ 'dr4 + K r;J,/.. · '<}..,~ + K '),i4: ?~) dx. I J.t 
'\A1 ))) ~ K 01 7c))( J 'pJ ~) t '?t. c)l, / 

is the "stifness matrix" and //.,<I= /, .1, •• ·, ,J ( ,J • ''']
nod

") 

is the "force vector". 

/ FJ ~ _ j t Q_ ~ Jxdydi. t ff~f ~ ds 

Assembling the equations (35) for all the elements. we get the usual "equili
brium" equations: 

(35) 

(36) 

(37) 

(38) 

where l j - r-, 1 1 - 11 · · (39) and t,. = t; f'"f ij - I I (39') the suaa2tion beeing extended to all 
., e t « 

the elements that meet at node i, and 1-/;j= [ 'h;j (39"). the summation being 
(I 

extended to the elements with the nodes!, and j in coD1DOn. 

Before we go on,let us stress the analogy between (38) and the equilibrium 
equations for tne elastic media. To the displacements in elastic body there cor 
responds :the potentials in the flow medium. To the forces there corresponds .
rates of flow. Therefore Q is nothing but body forces and q is nothing but loads 
applied on the surface s2 • To impervious boundaries there corresponds surfaces 
of the elastic body without load and to equipotential boundaries there corres
ponds portions of the surface of the elastic body with imposed displacements. 
Certainly, the points on the boundary where displacements are imposed (null in 
particular) get reactions from the exterior. Therefore,points where potential 
is fixed have a rate of flow coming from or going to outside. If the body is in 
equilibrium as a whole,then the reactions must be in equilibrium with the surfa 
ce loads, i.e., if there are no sources nor sinks, the rate of flow into the 
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•Y•tem at some boundaries must balance the rate of flow on the others, if the 
aquifer does not expand nor contract. 

9 - SOLVING SYSTEM OF EQUATIONS FOR TRIANGULAR LINEAR ELEMENTS 
If there is no flow in the~ direction eqs.(36) and (37) become 

/2~.= II (K 'r),/,-~ t- K. 'JK',·_ ?!J·)dx J.;. 
IJ ~~ X ~ QI(_ ~ VJ ~) 

For the triangular linear element the shape function for node i is 

(41) 

where 

(42) 

, x.· '}; [ l 
ZA = , . ,1 • :.: 2. area. '?f triangle 

X.J 'J i.Jk 

4 )(,._ ~ .. 

(43) 

As can be seen by substitution in (41), ,Ji ( -X;, ~,) == -1 

(40) 

The other shape functions N. and~ would be obtained from (41) by circular per-
mutation of subscripts. J 

Differentiating (41) and similarly for N. 
obtains the element "stiffness" matrix J 

and Nk and substituting in (41) one 

6-,t.; t-t· t,- Ji.. <'·e. ('; C'j <!; (' ... 
' ' J J 

lL [ ~ ]l= :~~ ii .e.i 1-; .l-* e·c· CJCtt_ (44) + J J 

,6,.., l, t11. 4.A S:,.,,, C It Ck. 

Also performing the integration J 'l Q ,I; J( dy-= ff ff. (a, + &,--x + C,· J) dK. -'; 

... body fom wmr if r O _ ~ /; I (45) 

e.. 

would be obtained; i.e. the rate nf flow per unit volume Q
1
assumed to be constant,· 

can be divided in equal parts by the three nodes of the element. 

Having scattered the h eij of each element on the nodes of the network as refered 
in (39), (39') and (39 ),we come to the system of linear equations 

,1,--s = 1, 2, ···, ,J 
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where N is the number of nodes, 

Some of the nodes, say M, lie on the boundaries s1 , s
3 

and s
4 

(Fig. 1) where 
the potential is stated, Therefore the number of unknowns can be reduced to 
N-M. After putting in ri·ght hand side of (46) the known values., ve have 

f-f.\,/P.., = +,..- HA"' Cfm , IT'/ ::/Tt (47) 

where 111 are the nodes where the potential is fixed. 

After getting the N-M potentials from the linear system of equations (47), we 
can substitute them in the remaining set of M equations. 

µ,.,,"q>"':: +m • (48) 

and obtain the rates of flow at nodes m. -
From a computer programming point of view it should be notice that the partial 
matrices Hrn of the coefficients and H of the constant terlllS can easily be 
extracted frqpi the global "stiffness" ~trix Hra; r,s • 1,2, ••• ,N, if we codify 
the nodes where the potential is unknown, say nodes type 0,and the nodes where 
the potential is known, say nodes type 1. 
It should also be refered that although the 
basic "stiffness" matrix is that of the tri 
angular element, the "stiffness" matrix for-
a quadrilateral element is obtained by con- A 

densation at a further st~p in the program ,----
(Desai and Abel, 1972). 2 

10 - NON-HOMOGENEIS'Y AND ANISOTROPY I 
Zienkiewicz (1971) call the attention to the fact that the functional (28),to 
be minimized,has no derivatives of the permeability K, K and K. From thst 
situation he infers that the permeabilities can changJ abluptlyifetween elements 
or be allowed to vary within, since account of such a variation is taken in 
integrals evaluating the element matrices. However, one should notice that, 
even in homogeneous media there is no continuity of specific flux rate '11n nor
mal to the coD1110n side of two contiguous elements, as there should be, This ha.2_ 
pens, for example, in the triangular linear elements, which have continuity of 
(Jon the sides in coD1110n, but not continuity in the derivatives of ,p and there
fore o i qn, Of course as long as the number of elements tends to infinity the 
"chapeau" functions,by which we substitute the potential,tends to the actual 
1<x,y) and therefore the derivatives of 1 tend to be continuous and hence qn 
becomes continuous at the limit . In the case of non-homogeneous media we alrea 
dy have seen (21) that the continuity of qn must be explicitment formulated at
the internal boundary C (Fig. 7) where permeability Kij is discontinuous. The 
increasing number of elements wjll assure continuity of the derivatives of~ 
but not that of q = q_.~ = /(--~'11-. 

r- [ 'J ;)A,' J . 
Therefore for the case of abrupt change on an internal boundary C (Fig. a) (21) 
and (23) should be used instead of the "equilibrium" equations (38). Since for 
triangular linear elements 'iltl , c,...f = J, . .J.)z.4 and ~ = ·e-t= e,r/.. lz A (49) 

(21) would simply become 
7h Y, ?J ,/' 
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. l K., 
1<." n 

,t :- = ~; - ~ ... , C '.·:: )( ( ,"j ; .t le:.' 

2 

(50) 

where i,j,k are circular permutations of 1,2,3 and 1,3,4 for triangles A' and A" 
respectively. 

In the case of holll)geneity but with anisotropy t.he element!''!tiffness" matrix must 
be calculated in local coordinates xl' y1 i.e. in the principal directions of the 
permeability. However, since potentials~ are scalar quantities, the asseui>ling 
of the "stiffness" matrix for the whole network can be perfomed in the usual way: 

Before we go further let us have a brief reference in relation to the best type 
of elements to be used. The linear triangular element used by Zienckiewicz (1971)~ 
Heuman and Witherspoon (1970) and others,has the advantage of simplicity and 
the values of, are continuous on the aide common to each pair of contiguous 
elements. As refered above (No.9) the triangular mesh can be transformed in a 
quadrilateral one, by condensation, but that does not increase accuracy. Recent
ly other types of elements have been used such as the quadrilateral quadratic 
element (R. Oliveira (1977)). Although a higher degree accuracy for this type 
of element may be espected, continuity of 1 and its derivatives on the common 
side of each pair of contiguous elements remains to be shown. 

11 - FURTHER DISCUSSION OF FINITE ELEMENTS TECHNIQUE AND SOME SUGESTIONS FOR 
IMPROVEMENT 

We have already seen (No.5) that methods based on deformation of'the upper ele
ments may do not converge near the exit point where phreatic surface meets the 
seepage face (point C in Fig. 1). Neumann and Witherspoon (1971) also refer out
flow at the singular point common to the upstream face of the dllll! and the 
impervious base. Also the nuui>er of iterations necessary to get convergence 
is rather large. We think that this large number of iterations and also the ins
tability of the process has something to do with the relationship between the 
imposed maximum error lr-;l<t.. and the mesh size. in fact with a large mesh size 

840 



SIAMOS-78. Granado (Espana) 

we can expect that the difference Y-9 changes sir from one iteration to the 
next maintaining in both an absolute value) y- 9 greater than the imposed maxi 
mum error e. 

Another point to refer is the error in the rate of flow. Neumann and Widerspoon 
(1971) and others impose no maximun error on the rate of flow at free surface. 
However, when the condition lj- p\< f.. is reached the flow through the final phrea 
tic surface wpl not be zero. Our experience have shown that in some cases the
minimum \i -~ I in· the process does not correspond to the minimum flow through 
the phreatic surface. 

Since a izood a:,proximate initial position of the exit point C is essential for"con 
vergence" in any method ,we must state a way of determinatin11. that position as 
a preliminary phase. Going into the physical process we can see that with a few 
initial steps we can obtain pratically the final position of the exit point C. 

In fact if a trial free surface 
(assumed a polygonal or straight 

A 

Fig. 8 

line) is fixed at a high level 
and we impose cj = :J on AC 1 , the 
system will respond with an ave 
rage inflow ~hrough AC1, If -
ACn is fixed too low, and 'P=J
the system will respond with an 
average outflow through ACn, 
Therefore,the correct exit point 
C is that between those sucessi
ve points Ci an Ci+1.for which 
the average rate of l~w through 
AC· and AC· 

1 
are of opositP signe.Therefore the exit point may be obtained inter-

1 1+ 
polating betwPetl hese residual average rates of flow of oposites si11.ns of the 
last steps.We get the position of C and although that of a provisional free 
surface.This is obtained by interpolation between ACn-1 and AC0 • 

After this preliminary steps the change in the shape of the free surface,assuur 
ed at start can be done by Desai's fixed network, for example. If in a different 

' 
way we take ACn too low and assume no flow on it,the system will respond with 
potential 1c larger than YCn since the flow region is restricted.Then we must 
move C uppwaPds until ~ - y <: O. 

c ... J("' 

12. SOME EXPERIENCES USING SOME OF THE SUGESTIONS MADE 
As a first example we refer an homogeneous isotropic dam (Fig. 9 ) with aver
tical filter. We started with a trial exit point C1 at the elevation of 84,00 m 
and went down to elevations of 74.00 m, 64.50 m and 54.00 111, imposing in each 
calculation </, = y on ACi. For elevation of 64. 50 we obtained the average inflow of 
+.~fxl0~6m3/s,m throurhAC3 and for elevation of 54.00 we obtained an outflow of 
-.32xl0-6m3/s.m throughAC4 .Doing a linear interpolation between these positions of 
C in proportion of the flow rates for the interwediate points, we obtain-
ed a tentative free line which practically coincides with that obtained by a 
large number of iterations with a deformable mesh (Martins and Vargas, 1976). 
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A second example refers to an anisotropic homogeneous dam (Fig.10 ). The ratio 
between the horizontal and vertical permeabilities is 10.We first got an approxi
mate exit point at elevation 80.00. Further we impose the condition of noflow 
on the estimated free surface and did the interpolation sugested oy Desai (1976). 
The result very much approaches a preceedings one with a large number of iter
ations (Martins and Vargas, 1976). 

As a third example we present the seepage flow out of a ditch. Although the 
first interpolation according to Desai seems not to give a good free surface li
ne (Fig. ll ), nevertheless the flow rate out of the ditche pratically coincides 
with that given by Jeppson (1968 c).In fact we obtained the total outflow of 
Qt. O 995x2m3/(sxm) for K 2 10-6 m/s which gives Qt/KD • 6,6 pratically coinci
dent with that given by the same author (1968 a, p.280; T/D = 4 and H/D • 4). 

As a forth example (Fig. 12 ) the problem of the seepage through an heteTogeneous 
aquifer is solved by interpolation within a fixed mesh with no flow at the upper 
surface (Desai, 1976) and,alternatively1 solved after .the exit point is obtai~. 
ed by trial according the foregoing sugestion. No significative diferences have 
been found between the two techniques. In both cases the rate of flow is about 
20% higher than that given by the Dupuit appToximation (Bear, 1972, p. 373). 

Finally, a fifth example (Fig.~J ) deals with an heterogeneous, anisotropic 
earth dam. The problem have been solved with a fixed network. The first interpo
lation accordiny to Desai gives a solution somewhat far from Correia's one (1977). 
It should be notice that both methods does not includ discontinuity of permea
bility on the boundaries between the two media as an autonomous internal bounda-
ry (no. 6). Correia's progTam uses quadrilateTal quadratic elements and 
ours uses a simple quadrilateral mesh obtained by condensation of triangular 
elements. His solution has a much sl"aller drop of potential. through nucleous than ours. 

13 - LAST DISCUSSION AND CONCLUSIONS 
The convergence of the finite elements approach to the solution of the free sur 
face flow problem means essentially that for properly poeed problems when the -
maximu:-, size of the mesh tends to zeTo the finite elements solution tends to 
the exact one, which is unique. It does not mean that for a given mesh with a 
fixed number of nodal points and a given form of discretization there is a poly
gonal free suTface such that the potential<? exactly coincides with the eleva-
tion y; the rate of flow being simultaneously null at the vertices. 

Therefore, for a given mesh, we cannot impose at will a limit to the maximum 
error l<= 11>-~I, independent of the mesh size. However, we feel that for a given 
mesh and a given form of discretization, there is a polygonal free surface which 
minimizes the erroTe. To ge; it we mi~'1, begin to consider a faneralized form 
of funtiona_!: <.J ~ / / [ ... ,1, p(,,1), 1,. ,?,, y (x,1)} V associated to the function-
nal ~ = fcj,-) I , b"oth to be simultaneously minimized within the physical domain 
where the flow can exist The solution of such a problem would require basic 
theoretical knowledgements perhaps not yet available. 

Meanwhile we may search the best position of the free surface according· the fol
lowing lines: 
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1. Begin with the determination of exit point since this point is critical in 
relation to the position of the free surface as stated before (no,11) at·the 
provisional free surface assumed to be some polygonal (e.g. a straight line) 
between the entrance point and the current tentative exit point. Calculating 
the flow rate Qi at each nodal point i at on the corresponding free surface, we 
average Qi. When Qaverage becomes negative, i.e., the flow domain becomes so re_! 
tricted that on the trial free surface there is outflow, as an average, we stop 
the process and obtain the approximate exit point by interpolation between the 
two last positions. We also get an interpolated free surface. Further, we recal
culate - setting a noflow condition on the just obtained free surface. The actua 
shape of the free surface may now be obtained doing the kind of interpolation 
sugested by Desai (1976) for a fixed network. 

ii. For a properly po~ed problem in heterogeneous media, we must consider inter
nal boundaries where the permeability is discontinuous. This cannot be done cor
rectly treating the nodes at those boundaries as internal normal nodal points, 
unless we used a kind of mixed finite element where at corners i,j,k,l the un
knows would be potentials and at midsides m,n,o,p the unknowns would b 
specific rates of flow qn· 
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