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Abstract
This study investigates the application of multisource and multiscale Earth Observation 
(EO) technologies for monitoring water quality in the Kassandra Mining District, 
Chalkidiki, Greece. We integrate spectral data from various platforms: high-resolution 
water spectral libraries from an OceanOptics STS-VIS-VIS spectrometer (337–823 nm) 
on a DJI Phantom 3 UAV, multispectral imagery from a Parrot Sequoia camera (4 bands) 
on a DJI Phantom 4 Pro UAV, and 8-band multispectral Planet Labs satellite data at 
3-meter resolution. These datasets are combined with in situ surface water samples from 
field campaigns and long-term monitoring by Hellas Gold (HG). Initial results indicate 
that Total Suspended Solids (TSS), serving as a proxy for estimating arsenic high/
medium/low (As) levels, can be predicted at high accuracy using Partial Least Square 
Regression (PLSR) on the water spectral libraries (R² = 0.85). Modified spectral indices 
based on the most important wavelengths identified by PLSR achieved an R² of 0.82, 
while original multispectral indices from PlanetScope imagery yielded an R² of 0.78. 
These findings suggest strong potential for utilizing these data and methods in water 
quality monitoring at local and regional scales.
Keywords: Mine water tracer test, Tyrol/Austria, underground mine, density stratifica-
tion, lessons learned

Introduction 
Water monitoring is a crucial task for mining 
companies. Mining operations can affect 
local water resources, so regular monitoring 
is vital for ensuring compliance with 
environmental regulations. Additionally, 
water quality assessments are essential for 
pollution prevention, allowing companies 
to identify contamination from potentially 
toxic metals or toxic chemicals early on. 
Immediate corrective actions can then be 
taken to prevent broader environmental 
damage affecting ecosystems and public 
health (Mogimi et al. 2024).

Remote sensing techniques offer numerous 
advantages in water monitoring, including 
comprehensive coverage, cost efficiency, and 
real-time monitoring capabilities. Imaging 
spectroscopy presents an effective alternative 
to traditional laboratory analyses, enabling 

the detection of various environmental 
parameters, such as total suspended solids 
(TSS), using spectral sensors (Adjovu et al. 
2023). Many case studies focused on surface 
water quality have primarily utilized satellite 
data (Wirabumi at. al. 2021). Additionally, the 
use of UAV-sensed data has rapidly emerged, 
highlighting its significant potential for the 
water pollution monitoring (Guimarães et al. 
2019, Zeng et al. 2017).

In this study, we explored the integration 
of various UAV-based spectral data and 
developed spectral models suitable for real-
time monitoring of surface water quality. We 
also evaluated the feasibility of up-scaling 
these spectral models to match the spectral 
and spatial resolution of high-resolution 
multispectral satellite data from Planet Labs, 
thereby facilitating water monitoring over 
larger areas.
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Test Site
 Th e study was conducted in the Kassandra 
Mining District on the Chalkidiki Peninsula 
in northern Greece, known for its rich 
mineral resources. It hosts one active un-
ground mine, one underground mine in 
care and maintenance and one open pit  / 
unground mine under construction, all 
operated by Hellas Gold (HG): Olympias, 
Stratoni, and Skouries. Olympias primarily 
extracts gold (Au), lead (Pb), and zinc (Zn), 
focusing on gold and base metal production. 
Stratoni specialized in lead (Pb), zinc (Zn), 
and silver (Ag), establishing itself as a key 
silver producer; however, it is currently 
under maintenance. Skouries, which focuses 
on copper (Cu) and gold (Au), serves as an 
important source of these minerals but is 
currently under construction.

Data
Th is section outlines the fi eld data acquisition 
methods, including UAV-based and water 
sampling, conducted from April 11th to 17th, 
2024, in the Kassandra Mining District of 
Chalkidiki (Fig. 1).

UAV-Based Water Spectral Data 
Acquisition
Th e lightweight OceanOptics STS-VIS 
spectroradiometer (40 mm × 42 mm × 24 
mm, 60 g) was mounted on a DJI Phantom 
3 UAV to acquire water spectral libraries, 
capturing data across 1,024 spectral bands 

in the 337–823 nm range with an optical 
resolution of 1.5 nm and a 25° fi eld of view 
(FOV). Powered by an external battery and 
operated with a Raspberry Pi 3, it features 
a Wi-Fi-enabled web interface for ground 
control. A custom 3D-printed mount was 
designed for optimal weight distribution 
and stability. Data were collected at 15 sites 
(Fig. 1) across three rivers and streams, fl ying 
at 3 meters above the water for minimal 
disturbance and achieving a spatial resolution 
of 1.2 meters. Data were systematically 
collected at two-second intervals along three 
transects: 50 meters upstream, 50 meters 
downstream, and diagonally across each water 
body. A customized Python script in Jupyter 
Notebook processed the radiance data from 
*.txt fi les, calculating fi nal refl ectance using 
input fi les for dark body, white reference, and 
sample measurements per the OceanView 
manual. Th e Savitzky-Golay fi lter (SGF) was 
applied to smooth the collected spectra using 
the ‘scipy.signal.savgol_fi lter’ function in 
Python.

Concurrently, multispectral imagery was 
captured at 13 sites near the mining pits using 
a lightweight (72 g) Parrot Sequoia camera 
mounted on a DJI Phantom 3 UAV. Th is 
4-band sensor operates in the Green, Red, 
Red Edge, and Near-Infrared (NIR) ranges 
and was paired with a 35-gram sunshine 
sensor to measure incident solar radiation. 
Data were collected at 35 meters altitude, 
with 11-meter line spacing and 2-second 

Figure 1 Areas of the interest: Water Quality sampling and UAV data acquisition sites.
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capture intervals to ensure adequate overlap. 
Calibration images were recorded before 
each flight with an Airnov VIS-NIR greyscale 
calibration panel. All multispectral data 
were processed and calibrated using Agisoft 
Metashape Professional, resulting in high-
resolution mosaicked reflectance images 
(2.5 cm) for detailed spatial insights into the 
study sites.

Satellite Data
An 8-band multispectral surface reflectance 
mosaic from PlanetScope, harmonized to the 
Sentinel-2 sensor, was obtained in GeoTIFF 
format (Planet Labs PBC, 2024). This mosaic, 
acquired on April 11th, was specifically 
chosen to align with the UAV data collection 
timeframe. The data were accessed through 
the PlanetScope Explorer platform under a 
student scientific license.

Water in-situ samples
Water samples were collected during field-
work from April 11th to 17th, 2024, in 
conjunction with UAV data acquisition at 
all 15 locations that matched the UAV sites 
(Fig. 1), including sections of the Olympias, 
Stratoni, and Skouries streams in active 
mining areas. These samples were analyzed at 
HG laboratories for the same parameters as in 
long-term monitoring, including potentially 
toxic metals and Total Suspended Solids 
(TSS) concentrations. However, organic 
carbon, another important water quality 
parameter, was not possible to analyse at HG 
laboratories. The results were statistically 
evaluated to identify key relationships relevant 
to water quality assessment. Additionally, 
we examined long-term environmental data 
from the HG monitoring system, covering 
January 2015 to April 2024, which includes 
a wide variety of parameters also analyzed in 
the April 2024 water samples.

Methods
Statistical analysis of laboratory water 
analysis
A common statistical assessment was 
applied to the in-situ water sample data, 
which included correlation analysis, linear 
regression, and calculation of the coefficient 
of determination.

Partial Least Squares Regression (PLSR) 
To assess the high-spectral resolution data 
from the OceanOptics STS-VIS (water 
spectral libraries), Partial Least Squares 
Regression (PLSR) was employed. PLSR is a 
quantitative chemometric method designed 
to analyze data with strong correlations 
and noise. Its main advantage over other 
multivariate methods is its ability to 
manage datasets with more variables than 
samples, making it ideal for spectroscopic 
data containing hundreds to thousands of 
reflectance values. PLSR utilizes two matrices: 
X (independent variables, such as spectral 
libraries) and Y (dependent variables, such 
as chemical laboratory analyses). It applies 
a technique similar to Principal Component 
Analysis (PCA) to reduce the dimensionality 
of the X matrix while maximizing its 
covariance with Y.

Band indices
PLSR was conducted on the OceanOptics 
STS-VIS high-spectral resolution data 
(water spectral libraries) to identify spectral 
wavelengths most strongly correlated with 
selected water parameters. The most sensitive 
wavelengths were then used to modify 
existing multispectral indices, including the 
Normalized Difference Vegetation Index 
(NDVI; Rouse et al., 1973), Normalized 
Difference Water Index (NDWI; McFeeters, 
1996), Normalized Difference Suspended 
Solids Index (NDSSI; Hossain et al., 
2010), and Water Ratio Index/ red-band 
modification (WRI; Shen and Li, 2010). 
These indices were applied to imaging data 
from the multispectral Parrot Sequoia and 
PlanetScope sensors; however, NDSSI was 
not calculated for the Parrot Sequoia due 
to its lower spectral resolution. Finally, 
water indices from all three datasets were 
statistically analyzed using linear regression 
to assess their relationships with the tested 
water parameters.

Results
Selection of the water environmental in-
dicators
After analyzing laboratory results, TSS was 
the only optically active constituent (OAC) 
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that consistently exceeded detection limits 
across most samples, showing signifi cant 
variation among sampling sites. A linear 
regression analysis revealed a correlation 
between TSS and As values (R² = 0.33), 
which improved aft er excluding samples 
with low TSS (<5 mg/L) and As (<15 µg/L) 
concentrations, leading to high RMSE 
values. With these thresholds, the correlation 
strengthened, achieving an R² of 0.43 and 
0.44 for both water sample analysis and 
long-term monitoring, respectively (Fig. 2). 
Th ese fi ndings suggest that TSS can serve as 
a proxy for estimating arsenic concentrations 
(Nasrabati et al. 2018), enabling predictions 
of low, medium, and high As levels based on 
TSS measurements.

Spectral data analysis
PLSR was applied using high-resolution 
spectral data from water spectral libraries. 
In this analysis, refl ectance served as the 
independent variable (X), while TSS and 
As were the dependent variables (Y). Th e 
derived regression coeffi  cients (Fig. 3a-b) 
indicated that wavelengths from the red 
to near-infrared regions were the most 
signifi cant for predicting TSS as well as for As. 
Consequently, a PLSR model was established 
for TSS prediction, achieving an R² of 0.99 
for the training dataset and R² of 0.85 for the 
validation dataset (Fig. 3c) using the Leave-
One-Out method (Kopačková-Strnadová et 
al. 2021). In the case of As, we could only 

establish a training model, achieving an R² 
of 0.97 (Fig. 3d). Unfortunately, validation 
was not feasible due to the dataset lacking 
representative values that fall in the middle 
range between low and high values.

To assess the estimation of TSS, potentially 
also As, using spectral indices, four commonly 
used multispectral indices were adapted 
to suit the high spectral resolution of the 
water spectral libraries. Rather than broader 
spectral regions for the blue, green, red, and 
near-infrared bands, we used wavelengths 
most sensitive to TSS, identifi ed by PLSR: 
460.5 nm, 530.7 nm, 674.2 nm, and 805.9 
nm (Tab. 1). Th ese spectral indices were then 
also applied to images from the Multispectral 
Planet using the original spectral bands 
(Tab.  1). For Parrot Sequoia images, the 
NDSSI index wasn’t used due to the limited 
number of spectral bands available.

When comparing the regression results 
between the in-situ data and the analyzed 
spectral datasets (Tab. 2), the water spectral 
libraries—characterized by high spectral 
resolution and high spatial detail—to those 
obtained from multispectral imaging data, 
it is evident that models with higher R² 
values were achieved using the water spectral 
libraries. However, this trend does not hold 
for the NDSSI index, which seems that may 
perform better with broader wavelength 
ranges (e.g., spectral bands) as it was specifi -
cally designed for multispectral data. Th is 
will be the focus of further analysis. Overall, 

Figure 2 Correlation between TSS and As: 2024 In-situ samples, r=0.66, R2=0.43 (a), Long-term monitoring 
2015-2024, r=0.66, R2=0.44 (p<0.001) (b).
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Figure 3 PLSR analysis and predictions applied to high-resolution spectral data - water spectral libraries: (a) 
Regression coefficients for TSS prediction, (b) Regression coefficients for As prediction, (c) PLSR predictions for 
TSS (blue – calibration, red – validation), and (d) PLSR predictions for As (blue – calibration, red – validation).

Table 1 Indices definition and adjusted formula used for the water spectral libraries/STS-VIS data.

Indices Standard formula Reference Adjusted formula to STS-VIS data

NDVI
ρNIR – ρRED 
ρNIR + ρRED

Rouse et al., 1973
ρ805.9 – ρ674.2 
ρ805.9 + ρ674.2

WRI (Red)
ρGREEN – ρRED 
ρNIR + ρRED

Shen and Li, 2010
ρ530.7 + ρ674.2 
ρ805.9 + ρ674.2

NDWI
ρGREEN – ρNIR 
ρGREEN + ρNIR

McFeeters, 1996
ρ530.7 – ρ805.9 
ρ530.7 + ρ805.9

NDSSI
ρBLUE – ρNIR 
ρBLUE + ρNIR

Hossain et al., 2010
ρ460.5 – ρ805.9 
ρ460.5 + ρ805.9

Table 2 Statistical evaluation of the linear regressions performed between water in-situ analysis and the 
spectral indices from the water spectral libraries (STS-VIS), Parrot Sequoia, and Planet Lab data.

Indices R2/Regression

STS-VIS data Parrot Sequoia Planet Lab data

NDVI 0.815 / y = 0.05x – 0.09 0.721 / y = 0.11x – 0.51 0.493 / y = 6.11x + 1.76

WRI 0.731 / y = -0.02x + 1.02 0.309 / y = -0.08x – 1.76 0.647 / y = -18.49x + 17.60

NDWI 0.781 / y = -0.02x + 0.01 0.623 / y = -0.07x + 0.58 0.775 / y = -23.49x – 2.83

NDSSI 0.288 / y = -0.10x – 0.09 X 0.715 / y = -24.00x – 3.93



IMWA 2025 – Time to Come

500500 Valente, T., Mühlbauer, R., Ordóñez, A., Wolkersdorfer, Ch.

reliable TSS predictions were obtained when 
scaling the tested indices to Planet Lab and 
Parrot Sequoia data, with the NDWI index 
achieving the highest R² of 0.78 and 0.62 
respectively.

Conclusion
Th is study examined the feasibility of 
estimating Total Suspended Solids (TSS) 
correlated with arsenic (As) using high 
spectral and spatial resolution data, specifi -
cally water spectral libraries (STS-VIS) and 
multispectral imaging data from PlanetScope. 
Th e results confi rm the signifi cant potential 
of these contactless technologies for water 
quality monitoring, leading to the following 
conclusions: a) TSS is an important parameter 
correlating with As (r = 0.66, R² = 0.44, p < 
0.001), indicating TSS can serve as a proxy 
for semiquantitative As estimations (high-
medium and low values); b) TSS predictions 
can achieve an R² of 0.85 using PLSR on the 
water spectral libraries; c) Generally good 
predictions were observed with multispectral 
indices and PlanetScope data (Fig. 4), with the 
NDWI yielding the best results (R² = 0.78).
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