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Abstract
In this contribution, we explore the use of hyperspectral (HS) sensing, as a tool 
to monitor post-mining landscapes facing acid mine drainage (AMD). Emerging 
hyperspectral sensors can complement such monitoring by rapidly characterizing soil 
and water bodies at multiple scales. We propose a workflow to integrate hyperspectral 
visible to near-infrared (VNIR) data with mineralogical and geochemical data from a 
few specimens to precisely map the extent of acid mine drainage using machine learning 
algorithms. The resulting maps include the semi-quantified concentration of dissolved 
metals, physicochemical properties in water bodies, and associated AMD minerals sub-
products in different post-mining scenarios.
Keywords: hyperspectral imaging, remote sensing, machine learning, unmanned aerial 
system, acid mine drainage, post-mining

Introduction 
Large quantities of mine wastes, such as 
waste dumps, slurry ponds, tailings and 
metallurgical wastes, are generated during 
the recovery of raw materials from primary 
mineral deposits (Hudson-edwards et al. 
2011). Such facilities are quite heterogeneous 
compared with other industry sectors due 
to their quantity, mineralogical formation, 
and their properties. The composition 
changes depending on the type of mineral 
processing and the enrichment chain applied. 
Lottermoser (2010) defines Acid mine 
drainage (AMD) as a process whereby low 
pH mine water is formed from the oxidation 
of sulfide minerals. AMD can occur in these 
waste facilities and if superficially dumped, 
when iron sulfide in coal mines or sulfur in 
base metal mines, can undergo into oxidation 
conditions (Dold 2017). With the removal 
of ore from the ground exposure of sulfides 
to water and oxygen in air takes place; 
in turn, the oxidation processes of pyrite 
FeS2 associated with iron, coal, and sulfur 
deposits can produce an acidic environment 
(Lottermoser 2010).

As a result of these acidic and metal 
concentrated waters, the natural ecosystem 

and aquatic life can suffer. Mainly impacted 
areas are rivers, lakes, estuaries, and coastal 
waters. Its advancement can take years or 
decades and can continue spatially increasing 
for centuries (Lottermoser 2010). Hence, such 
environmental concern must be monitored 
carefully and, ideally remedied. Many efforts 
have been applied in order to monitor the 
spatial distribution of contamination by AMD, 
commonly involving systematic sampling 
and laboratory analysis of stream sediment 
followed by interpolation of the results in 
assembled distribution maps ((Ferrier 1999); 
(Kemper and Sommer 2002)) however, such 
approaches can be time-consuming, costly, 
and with limited spatial coverage.

Regular and multi-temporal monitoring 
is required for such complex and diverse 
adverse effects on Earth ecosystems. Active 
control can serve as an effective method for 
successful conservation or rehabilitation 
of natural systems. In this sense, remote 
sensing tools have been widely used in 
many environmental investigations since the 
technique enables the use of digital imaging 
sensors to reveal key information from a 
distance (typically from satellite or aircraft) 
(Christopherson et al. 2019). Thus, traditional 
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monitoring studies based only on certain 
ground-sampling locations can be extended 
to large areas from derived aerial-image 
products. In general, optical spectral analysis 
refers to the measurement of matter-light 
interactions as a function of their energy. More 
specifically, this comprehends any radiation 
that is emitted, reflected or transmitted from 
the investigated target (Clark 1999). The 
development of new generations of sensors 
made it possible to examine processes on 
earth, beyond the visible spectrum of the 
human eye. Commonly, these devices can 
acquire data in different wavelength ranges 
(from the ultraviolet to the far-infrared 
spectrum of electromagnetic radiation) and 
have evolved from spectral over multispectral 
to hyperspectral sensors for different kinds 
of earth’s surface investigations. Currently, 
hyperspectral sensors are employed in a wide 
range of spatial dimensions (scales) according 
to the platform used for data acquisition (e.g., 
satellite, airborne, up to lab-scale sensing 
for detailed-mineralogical analyses) (Figure 
1). The emergent use of unmanned aerial 
systems (UAS), like multi-copters, and new-
generation lightweight hyperspectral sensors 
have become a tool to collect data at a higher 
spatial resolution than some of their aircraft 
and satellite counterparts, resulting in greater 

precision (higher spatial resolution of a scene 
and enabling the investigation of up to a 
few centimeters sized pixels) (Booysen et al. 
2020).

Methods
Hyperspectral Imaging 
The main goal of hyperspectral remote 
sensing (also known as imaging spectrometry 
or imaging spectroscopy) is to measure 
quantitatively the components of the Earth 
System from calibrated (radiance, reflectance 
or emissivity) spectra acquired as images in 
many, narrow and contiguous spectral bands 
(van der Meer et al. 2012)). Collected data 
results in a three-dimensional data-cube 
composed of a set of pixels (represented 
as vectors), containing the measurement 
corresponding to a specific wavelength 
(Benediktsson and Ghamisi 2015). This 
provides the opportunity to query a plottable 
spectral signature for each spatial position 
on a surface. The accompanying amount of 
information results in much larger data sizes 
compared to polychromatic or multispectral 
imagery (Lorenz 2019). The vector size is 
equal to the number of bands or spectral 
channels. In opposition to multispectral 
data, which usually acquire up to tens of 
bands, hyperspectral data channels are able 

Figure 1. Downscaling (multi-scale) scheme for hyperspectral sensing from high spatial coverage of satellite 
based sensors to high spectral resolution of drone-borne/ terrestrial sensors and hyperspectral data cube 
scanning general concept (Modified from(Flores et al. 2022)).



IMWA 2022 – "Reconnect"

85Pope, J.; Wolkersdorfer, C.; Rait, R.; Trumm, D.; Christenson, H.; Wolkersdorfer, K. (Editors)

to collect several hundreds of contiguous 
bands along the spectral axis (van der 
Meer et al. 2012). Regardless the scale of 
acquisition, hyperspectral sensors bring 
higher spectral resolution, in comparison 
to multispectral sensors, offering higher 
accuracy to detect targets and characterize 
earth surface processes. In Figure 2, it 
is possible to distinguish the differences 
between a common Red Green Blue (RGB) 
composite, a multispectral dataset and the 
hyperspectral. The visualization format of 
any spectral dataset is similar, regardless the 
covered wavelength range, scanned specimen 
or area, and the spectral process underlying. 
A spectral imaging dataset is composed 
by three dimensions with at least one, even 
indistinct, value defining the measured signal 
intensity along at least two spatial and one 
spectral axis (Lorenz 2019). 

A general workflow strategy is proposed 
in Figure 3. The methodology involves the 
integration of two main datasets and can 
be adapted to different scales of acquisition. 
The spectral data cube and state-of-the-art 
geochemical analyses over certain samples 

(ground validation/training data) are then 
fused using machine-learning techniques. In 
this article, two studies at different scales of 
acquisition are reviewed, in which different 
mapping algorithms have been applied to 
provide high-resolution maps of sediments, 
hand specimens, drill-cores and water bodies 
to quantify and monitor AMD extent.

Data Acquisition and Processing
Acquisition parameters and set-up will vary 
according to used hyperspectral sensors, 
manufacturer, size dimensions and spectral 
range coverage. Particularly, the visible to 
shortwave infrared electromagnetic range 
has been widely used to monitor AMD 
mineralogy at mining surroundings since 
iron and also REE present strong and 
narrow absorption features in the visible to 
near infrared (VNIR). In any case, acquired 
hyperspectral images need a series of pre-
processing steps in order to get worthwhile 
hyperspectral information out of the raw 
image. While laboratory scanning is usually 
only radiometric corrected (using dark and 
white calibration), aerial original data could 

Figure 2. Schematic examples on different levels of dimensionality of spectral data with x, y, λ being x and y 
the spatial and λ the spectral (Modified from (Lorenz 2019))
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be affected by many other factors, such as 
constant movement of the platform and, 
the effect of the microrelief on illumination 
and viewing angle. The series of procedures 
developed by (Thiele et al. 2021) in the open 
source python-based hylite tool deals with the 
mentioned issues and has been used in some 
of the reviewed multi-scale studies. 

Sampling strategy and analytics
In general all hyperspectral surveys, should 
be accompanied by validation campaigns, in 
where point spectral measurements have to 
be done in discrete and strategic spots of the 
investigated area, as well as the incorporation 
of further geochemical/mineralogical datasets 
to support the spectral method. Sampling is 
tailored to the target to be mapped: surface 
water or drainage, sediment, drill-core or 
waste dump material. The representability of 
scene elements should be considered as well 
as the notable optical and morphological 
differences. Once specimens are collected, 
can be taken to the laboratory for specific 
analyses of geochemistry and mineralogy 
(rock, sediments) and elemental composition 
(water) which then are integrated into the 
mapping as training data-sets. Local samples, 
on-site spectral point measurements or 
reference spectral libraries (e.g., United States 
Geological Survey (USGS) Spectral Library) 

and analyses are the basis for the accuracy of 
hyperspectral studies, hence the importance 
of their correct collection, preservation and 
preparation up to analysis.

Machine learning as mapping tool
Corrected hyperspectral image mosaic 
in radiance is subsequently processed 
using machine learning algorithms which 
pursues the integration of the performed 
validation analysis (e.g., geochemical, 
hydrogeochemical, mineralogical) with the 
HSI data of the target area or material. In order 
to improve the speed and accuracy of such 
data analysis, machine learning algorithms 
such classification and regression has been 
suggested in different scientific fields in the 
last decades (Acosta et al. 2019). Normally, 
the number of known observations is limited 
(i.e., training data), the goal of a classification 
system is to learn the characteristics of a set of 
predefined classes and assign a unique class 
label to each unknown data sample (Acosta 
et al. 2019). Machine learning techniques 
provides automatic approaches to discover 
underlying relations within both the HSI 
dataset and validation studies. For the 
proposed workflow, supervised classification 
and regression can be applied for mapping 
acidic environments (Flores et al. 2021). 

Figure 3. Proposed general workflow for integrated hyperspectral mapping.
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Results
In this section, we present two recent study 
cases in which the proposed mapping 
workflow have been applied in post-mining 
scenarios. The first have been used to monitor 
acidic environment surrounding mining 
legacies in the Iberian Pyrite Belt, Huelva, 
Spain (Flores et al. 2021), and the second 
study case is part of the European Union 
Horizon 2020 project TRIM4Post-mining 
(Benndorf et al. 2022) in which together with 
other near spectral sensors, hyperspectral 
imaging is used as tool for mine waste 
characterization along the life cycle (from 
operation area to waste dump) of coal mining 
operations Leipzig, Germany.

UAS scale
Unmanned aerial system (UAS) or more 
commonly known as drones represent an 
emerging tool in environmental monitoring. 

In regard to AMD, (Jackisch et al. 2018) 
implemented HSI for high-resolution, multi-
temporal mapping of proxy minerals for 
AMD in the Sokolov lignite region, Czech 
Rebublic. Most recently, mapping water 
bodies has been subject of hyperspectral 
research by (Flores et al. 2021) where the 
hydrogeochemical properties (pH, redox, 
Electro Conductivity and iron concentration) 
to assess the extent of AMD in Odiel and 
Tintillo waters (Figure 4A-B) have been 
mapped. In this study, several techniques have 
been combined to produce high resolution 
maps (Figure 4 C-D)), a machine learning 
approach using random forest regression 
(Figure 4D) was applied to fuse geochemical 
data using in-situ stations as training data 
at the field, with the hyperspectral dataset 
and mineralogical map over the river bed 
sediments for secondary iron minerals (e.g., 
goethite, jarosite, schwertmannite).

Figure 4. UAS-Hyperspectral environmental monitoring. (a) Location of the investigated area in the Odiel 
River (Huelva, Spain), (b) spatial coverage of hyperspectral survey (c) mineral classification map using 
Spectral Angle Mapper over river sediments (d) Hydrogeochemical map using regression over river flow path 
(Modified from (Flores et al. 2021))
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Laboratory scale
The TRIM4Post-Mining project (Benndorf 
et al. 2022) demonstrated the versatility 
and cross-scale application of hyperspectral 
sensors. In this project, a processing chain 
is being developed to analyze samples from 
a lignite dump. The goal is to obtain a high-
resolution characterization of the mine 
materials throughout the life cycle of the mine 
and to detect both potentially acid-forming 
and buffering minerals. Figure 5 shows 
the laboratory setup for hyperspectral data 
acquisition (Figure 5A), the major lithologies 
for the case study (Figure 5B), followed 
by spectral interpretation and mapping 
recognition in one of the pit waste samples 
(Figure 5D) showing the major mineral facies 
discovered. Data acquisition was performed 

using the hyperspectral sensors of the project 
partner (TU Bergakademie Freiberg). Data 
processing, pre-processing, spectral analysis 
and predictive mapping are performed at the 
Research Center of Post-Mining in Germany. 
The detailed mineralogical information 
collected in this step is critical for subsequent 
geochemical modelling incorporating other 
data sets. This will allow mine operators to 
better plan reclamation activities and manage 
acidic wastewater generated in tailings ponds, 
on the efforts of finding the best post-mining 
scneario.

Conclusions
With the high demand for raw materials 
comes the waste generation and the perpetual 
tasks associated with efficient post-mining 

Figure 5. Spectral mapping using supervised classification for waste samples in Schleenhain and Peres dump 
areas for the TRIM4Post-Mining EU Project (Leipzig, Germany). (a) Sensor assembly at TU Bergakademie 
Freiberg, Department of Mine Surveying and Geodesy, Germany, (b) identified main lithologies (hand 
samples), (c) spectral profile of the main lithological groups in the mine (blue arrows shows different 
absorptions features for each group at 1400 nm) and (d) waste mixture sample and supervised classification 
map.
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management and risk supervision. In this 
sense, accurate and constant monitoring on 
terrain or vegetation cover of spoil banks is 
often required for two different reasons in 
post-mining management: (i) to monitor and 
prevent adverse effect of hazards; and (ii) to 
assess restoration success. Hyperspectral data 
brings several advantages as a complement 
to traditional environmental monitoring 
studies. The development towards lighter and 
smaller sensors, allows easier incorporation 
of hyperspectral technology into different 
stages of mine waste management. It could be 
used, rather during active mining to identify 
potential lithologies hosting minerals prone 
to AMD and forecast adverse effects, or in 
post-mining scenarios to target affected 
areas and continuous monitor restored 
areas. While laboratory HSI analysis, allows 
fast scanning for mineralogy identification 
of AMD drivers at different stages of the 
mine life cycle, UAS mapping compared to 
traditional ground surveying represent a 
reduction in the time employed on acquiring 
data. It allows reaching locations that may 
be difficult to access, under protected status 
or that involve personal security risks for 
terrestrial-sampling. Regardless the scale, 
hyperspectral sensors allow repeatability and 
recurrent data-acquisition. Therefore, multi-
temporal analysis are feasible and may allow 
constant monitoring of sensible ecosystems. 
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