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Introduction
Semiconductor nanocrystals possess unique
optical and electronic properties, which be-
stow them with a huge potential in a wide
range of applications (Sweeney et al. 2004). Of
these, zinc sul6de (ZnS), copper sul6de (CuS)
and iron sul6de (FeS) are of special interest.
ZnS is photoconductive, luminescent and a
piezoelectric material, making this compound
suitable to be applied in solar cells, light emit-
ting diodes, probes for the determination of
proteins and photodegradation of organic
compounds (Stanic et al. 1997; Yanagida et al.
1990; Zhu et al. 2004). CuS nanomaterials have
a wide range of applications, which include
catalysts (Liu and Xue 2009), nano-switches
(Sakamoto et al. 2003), optical 6lters (Chen et
al. 2009), solar radiation absorber (Li et al.
2009), among others. Iron sul6des are recog-
nized as advanced inorganic materials with
high potential in many applications, such as

high-density batteries, chalcogenide glasses
and solar energy materials (Chin et al. 2005).
The synthesis of all these nanomaterials has
been described using a wide variety of meth-
ods, including the use of surfactants, organic
solvent micro-emulsions, controlled double-
jet precipitation, hydrothermal synthesis, liq-
uid-solid phase synthesis, chemical vapor dep-
osition, high gravity or gas phase
decomposition, among others (Bessergenev et
al. 1995; Biswas et al. 2007; Chen et al. 2004;
Close et al. 1999; Ding et al. 2007; Thurston
and Wilcoxon 1999; Xu and Zhang 2008). In
general, these methods rely on the use of high
temperatures, as well as high pressures, radia-
tion and sometimes hazardous chemicals.

During sul6de-mining operations, sul6dic
rock comes into contact with the surface or
groundwater. Under oxidizing conditions,
pyrite-containing rock produces sulfuric acid
and dissolved iron. In turn, these acidic waters
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then dissolve other metals contained in the
rock, resulting in a low-pH, metal-bearing
water known as acid mine drainage (AMD) or
acid rock drainage (ARD; Doshi 2006). As a re-
sult, in some of those areas several mine lakes
are very acidic (pH < 3) and contain high con-
centration of sulfate (up to 3.5 g/L) and metals,
particularly iron, zinc and copper (Martins et
al. 2008). Passive treatments, such as bioreme-
diation using sulfate-reducing bacteria (SRB)
have proven to be a good solution (Garcia et al.
2001; Huisman et al. 2006). Previously, work
has been carried out in our group and a biore-
mediation system for AMD has been success-
fully developed (Martins et al. 2010). The selec-
tive precipitation of metals from multi-metal
containing systems, such as wastewaters and
soils, has been previously studied, using either
chemical sul6de sources or biogenic sul6de
(Fang et al. 2012; Sahinkaya et al. 2009; Sam-
paio et al. 2009; Tokuda et al. 2008). However,
when reported, the particles obtained were al-
ways in the micron range (>1 μm). Previously,
we have proven that the production of zinc sul-
6de nanoparticles (<25 nm) using SRB growth
media containing biologically produced sul-
6de, at room temperature and atmospheric
pressure, avoiding the use of additional and
expensive chemicals, is a possibility (da Costa
et al. 2012). Moreover, it has been demon-
strated that the use of growth media of di5er-
ent complexities, as well as the 6ltration or not
of these same media, yielded nanoparticles
(NP’s) with no considerable di5erences
amongst one another. Using this previously
acquired knowledge, we set out to, in the pres-
ent work, selectively synthesize metallic (Cu²⁺,
Fe²⁺ and Zn²⁺) sul6de nanoparticles. This was
achieved using arti6cial metallic solutions as
a source of the metal ions and real AMD in the
feeding of the continuous bioremediation sys-
tem, used as the source of sul6de, thus demon-
strating the feasibility of this method of syn-
thesis.

Materials and Methods
The bioremediation system used was the one

previously described by (Martins et al. 2010)
and the synthesis principle has been described
by (da Costa et al. 2012). A4er reaching contin-
uous operation, the excess sul6de produced by
the SRB in the bioremediation system was
used as the sul6de source for the precipitation
of the metals. The metal-containing solutions
were prepared using distilled water and a com-
bination of Cu²⁺ (CuSO₄.5H₂O, >99 %, Riedel-
de-Haën), Zn²⁺ (ZnSO₄.7H₂O, >99.5 %, Panreac)
and Fe²⁺ (FeSO₄.7H₂O, >99 %, Panreac). These
salts were added so that an approximate 6nal
concentration of 100 mg.L⁻¹ of each metal ion
was obtained. The initial pH was corrected to
2.1, using a 6M solution of HNO₃ (Panreac). Sul-
6de concentration was measured immediately
a4er sampling using a UV-visible spectropho-
tometer (DR2800 spectrometer, Hach-Lange)
by the Methylene Blue Method (665 nm, Hach-
Lange). The pH values were measured using a
pH Meter (GLP 21, Crison) and corrected to 5.0
and 6.5 a4er the 6rst and second precipitation
steps, respectively, using a 2M NaOH solution,
which was added drop-by-drop. Metal concen-
trations, before and a4er precipitation, were
determined by 7ame atomic absorption spec-
troscopy using a Shimadzu AA-680 model
spectrometer. XRD analyses were done using a
PANalytical X’Pert Powder di5ractometer with
an X’Celerator detector, at 45 kV and 40 mA,
with a step size (2�) of 0.016. Transmission
Electron Microscopy (TEM) coupled to EDX was
carried out using a FEG-TEM Hitachi H9000
microscope operating at 300 kV. The samples
were prepared by placing a drop, containing
the precipitates dispersed in ultra-pure dis-
tilled water, on a copper grid coated with
amorphous carbon 6lm.

Results and Discussion
A solution containing 96 mg.L⁻¹ of copper,
103.7 mg.L⁻¹ of zinc and 104.04 mg.L⁻¹ of iron,
at pH 2.1, was used. Fig. 1A shows the removal
percentage, as well as each metal concentra-
tion a4er every precipitation step. Also shown
are the removal efficiencies of all metals for
the overall process. As observed, the 6rst pre-
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cipitation step seems to be very selective in the
removal of copper, resulting in the precipita-
tion of only minor amounts of zinc and iron.
At the end of the second precipitation step (Fig.
1A), the remainder copper still in solution is, in
essence, completely removed in all samples,
never exceeding a concentration of 5 mg.L⁻¹.
At this step, there is also an undesired high re-
moval of iron (77 %), and, at the last precipita-
tion step, at which the removal of iron is de-
sired, this is achieved in almost its entirety
(>93 % of the iron in solution a4er the second
precipitation step). Overall, the process re-

moved 93 to 97 % of all the metals present. The
6nal pH, a4er all precipitation steps, ranged
between 7.2 – 7.5. Having successfully removed
the metals from the solutions, the precipitates
obtained at each step were analyzed by X-ray
di5raction (XRD) and the results obtained are
shown in Fig. 1B. In the di5ractogram of the
6rst precipitate, the peaks corresponding to
covellite (CuS, JCPD #00-001-1281) are clearly
present, as well as in the other precipitates;
however, in the second precipitate, peaks con-
sistent to those corresponding to sphalerite
(ZnS) are also present (JCPD #00-003-0579).

Fig. 1 In A, metal (Cu, Zn and Fe) removal percentages as well as the overall removal percentage for
each metal at the end of the each precipitation step. In B, the concentrations of each metal at the end
of each precipitation step. In both A and B, error bars are shown. In C, the X-ray di,ractograms of the
precipitates obtained at each step. Due to the high profusion of peaks, the identi-ed phases are not
indicated for simpli-cation purposes. These, however, included covellite (CuS; JCPD #00-001-1281),

sphalerite (ZnS; JCPD #00-003-0579) and iron (III) hydroxide (JCPD #00-038-0032).
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These also contribute to the di5ractogram of
the precipitate obtained at the third precipita-
tion step, in which peaks corresponding to
iron (III) hydroxide are visible (JCPD #00-038-
0032). Overall, these results corroborate those
illustrated in Figs. 1A and 1B, further indicating
that the precipitation process that herein de-
scribed is very selective for copper and less dis-
criminatory when precipitating zinc and iron.
Also, in the case of the latter metal, it should
be noted that the corresponding crystallites
identi6ed were hydroxides, not sul6de. This
may be due to the fact that the addition of the
NaOH for the correction of the pH may culmi-
nate in the formation of the iron hydroxide.

The elemental and morphological charac-
terization was done by TEM-EDX. In Fig. 2, the
TEM images obtained for each precipitate syn-
thesized at each precipitation step are shown
(Fig. 2A – 2C). The corresponding EDX spectra

are shown in Figs. 2D – 2F. The precipitates all
seem to show spheroid morphology, with sizes
ranging between 20 – 30 nm, though some
needle-like structures are identi6able in the
precipitate obtained at the third step. The EDX
results are consistent with the removal effi-
ciency data, shown in Fig. 1. The main precipi-
tated phase, in the 6rst precipitation step, is
CuS, with traces of both Fe and Zn.

This highlights the high selectivity of this
method for precipitating CuS, with minimal
co-precipitation of Zn and Fe species. At the
second precipitation step, ZnS is the main
phase present, followed by FeS and, to a
smaller extent, CuS. The former is the main
phase present in the precipitate obtained at
the 6nal step. However, ZnS is also present, as
well as some amounts of Cu. Nonetheless, it
should be noted that the presence of copper
in other precipitates other than the one ob-

Fig. 2 TEM images of the
precipitates obtained at

steps 1, 2 and 3 (A, B and C,
respectively). Also shown are

the corresponding EDX
analyses (2D – 2F). The ele-

ments identi-ed are shown.
Due to the composition of
the grid (Cu) and the high

relative presence of this ele-
ment, insets are shown, evi-
dencing the presence or ab-
sence of Fe as well as of Zn

in the precipitates obtained
at the second and third

steps.
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tained initially should be carefully discussed,
as the TEM grid used is composed of copper.
Consequently, this element appears promi-
nent in the analyses made for the precipitates
obtained at the end of both the second and
third steps. Additionally, Cl was also found,
which is not surprising, considering that the
water used for the preparation of the growth
media is tap water. Interestingly, traces of Si
were also identi6ed in the last sample, which
may result from either cross-contamination
with other samples (in which SiO₂ was used)
or from the fact that this sample was kept in a
glass vial.

Conclusions and Future Perspectives
In summary, by integrating a previously de-
scribed bioremediation system and a synthe-
sis process for obtaining nano-sized metal sul-
6des, we were able to selectively precipitate
CuS nanoparticles and ZnS particles, though
the latter with a smaller degree of selectivity.
The precipitation of FeS was not achieved, with
the Fe precipitates consisting, mostly, of hy-
droxides (Fig. 1B). The authors speculate that
this limitation, however, may be circumvented
by using, for example, on-line systems for the
accurate control of pH. Moreover, the imple-
mentation of a completely oxygen-free envi-
ronment may contribute for obtaining Fe pre-
cipitates in the form of sul6des, thus resulting
in a 6nal highly selective recovery process of
metal sul6des. Finally, the use of real metal-
containing wastewaters, such as Acid Mine
Drainage, may be a possibility, further con-
tributing to an integrated green process, re-
sulting in the simultaneous remediation of
contaminated waters and concomitant metal
sul6de nanocrystals production.
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