International Journal of Mine Water, Vol. 7, No. 4, December 1988, pp 43-52

INRUSH PREVENTION IN AN UNDERGROUND MINE

by

O. Sammarco Italian Bureau of Mines Ministry of Industry

ABSTRACT

The paper presents the first experimental results of a study for locating both, the water circulation network and possible isolated water bodies around an underground mine. The main purpose of the study is to define the geometry and the possible connections of water bodies and other cavities intersected with by the mining excavations, and evaluating the parameters which characterize the inflow from the bodies of water.

INTRODUCTION

In order to prevent inrushes of water in an underground mine or to reduce their effects once inflows have occurred, it is important to be familiar with the hydro-geological and hydrodynamic conditions around the existing and future mine workings. In particular, it is important to establish the geometry of the permeable formations, of the karst cavities, of the abandoned mine workings, whether waterlogged or potentially liable to floodings and to know the characteristics of surface and underground water courses which might flood into the mine.

RESULTS OBTAINED FROM A PRELIMINARY INVESTIGATION

The subject matter dealt with here is a part of a research programme being carried out in the Campino mine (Southern Tuscany), the results of which can be extended to underground mines in similar hydro-geological conditions. The purpose of the research is to recognize the geometry and other characteristics of the ground water regime and of any back water cavity around the mine workings. For this purpose the following parameters are evaluated:-

- o Elevations at which the exploratory boreholes intersect the water bodies are accurately identified.
- o Initial static water pressure and flow rate from each source of water is accurately logged.
- o Trends of pressure and flow rates are recorded as the cavity is de-watered.

44

Figure 2 Comparison between the maximum horizontal Dimensions of the water body detected by means of two boreholes and size of the tunnels.

Figure 3 Equivalent diameter of the horizontal section of fracture in relation to elevation above sea level.

46

·	And Law	Elouv Date	Stable Dracente	Water Hand	Victuation of the second s	Uend Pres	Amo of Wor	Tainland		
v	t av	LIUW MAIL	at zero flow	above Floor		ncau prop	AICA OI WAICT	Equivalent Radius	intermediate Elevanon	
		0.001 m ³ /s	MPa	8	m3	8	m2	E	B	
	0-	16 16								-
	5	32	1.094	111.60						
	ć	14 17	1 074	100 53	1257.98	2.07	607.72	27.82	110.56	
	יי		10.1		1205.28	12.40	97.20	11.12	103.03	
	4	13.78	0.925	97.13	1149.98	6.20	185.48	15.37	94.03	_
	S	12.84	0.892	90.93	3200 55	06.2	CT 003		C0 L0	
	00	12.55	0.831	84.73	CC.047C	07.0	c/.0cc	00.02	C0.10	
	6	12.55	0.821	83.70	1084.32	1.03	1052.74	36.62	84.21	
	. =	10.20	0700	80.67	1965.60	3.10	634.06	28.42	82.15	
	: :	10.40	067.0	70.00	853.63	8.27	103.22	11.47	76.46	
	1	00.6	60/ 0	12.33	6448.90	15.50	416.06	23.02	64.58	
	16	9.10	0.577	56.83	770.69	7.23	106.60	11.65	53.21	
	17	8.74	0.486	49.60	110 21		21 63 10	11 13	10 61	
	23	8.50	0.466	47.53	10.00444	7.01	C/.8C17	4 4 .2C	48.30	

Table 1

Reproduced from best available copy

47

				Table 1	(Continued	(
	Flow Rate	Stable Pressure	Water Head	Volume inflow	Head Drop	Area of Water	Equivalent	Intermediate Elevation	
	0.001 m ³ /s	at zero 110w MPa	m m	m ³	ш	m ²	Raulus E	E	
1	701	2010	07.67	2133.22	4.13	516.52	25.65	45.46	-+
	06.1	0.420	40.40	2042.50	2.07	986.71	35.45	42.36	
	08.1	0.400	41.33	1302.91	2.06	632.48	28.39	40.30	
	97.1	0.585	12.65	4127.76	11.37	353.04	21.53	33.58	
	6.37	0.274	27.90	3066.34	14.47	211.91	16.43	20.66	
	5.46	0.132	13.43	1327.10	4.13	321.33	20.23	11.36	
	4.78	0.091	9.30	1185.84	2.07	572.87	27.01	8.26	
	4.37	0.071	7.23	100175		83 7 63	00.20		
	4.00	0.051	5.17	1084.72	7.00	80.020	06.62	0.20	
	3 64	0.041	4 13	1650.24	1.04	1586.77	44.96	4.65	
	20.0	110.0	01.6	2083.54	1.03	2022.85	50.76	3.61	
	C7.C	0000	01.6	1856.74	1.55	1197.90	39.06	2.32	
	2.89	0.015	1.55		0 50	01 10201	116.66		
	2.70	0.010	1.03	77.4000	70.0	61.10001	C0.011	1.29	
	2.50	0.010	1.03	2471.04					
	0.34 0.09								
	0.00								~

48

International Journal of Mine Water | ${\ensuremath{\mathbb O}}$ International Mine Water Association 2006 | www.IMWA.info

	Stable Pressure at zero flow MDa	Water Head above Floor m	Volume inflow	Head Drop	Area of Water 2	Equivalent Radius	Intermediate Elevation
IMLTA		E	Ē	E	n²	E	E
0.071		7.23	673.92	3 10	217 30	16.64	5 60
0.041		4.13	584.06	1.02	30 133	40'01	00°C
0.030		3.10	1005 55	EU C	CO.10C	00.02	10.5
0.051		5.17	1718 50	10.4	1657 40	16 00	4.15
0.041		4.13	0000111		04.2001	40.00	4.00
0.035		3.62	2398.40 017770	10.0	4/02.86	77.40	3.87
			07.1117				
			0/.1020				
			00.2cu2				
			01.0C/2				
			00.4.001				
			1001 00				
			00.4071		í		
			3672.00				

					-	
Intermediate Elevation	8					
Equivalent Radius	8					
Area of Water						
Head Drop	E .	0.00	0.00	0.00	0.00	0.00
Volume inflow	È	1710.72	2496.96	2494.80	1028.16	2523.31
Water Head above Floor	ш 2.07		10.7	10.2 L0 C	2.07	2.07
itable Pressure at zero flow	0.020		070.0	0.020	0.020	0.020
Flow Rate 5	06.0	UO U	06.0	0.85	0.85	0.92
Day	308	370	251	380	402	435

Table 2 (Continued)

50

With the aid of all known geological, hydrodynamic and physio-chemical data, the described methodology should enable to identify the geometry of the waterlogged bodies encountered and of any existing connections with increasingly refined approximations if the loggings are done more frequently.

In the companio mine the development of the mine is carried out in the lower part of the orebody dyke, mainly consisting of pyrite, which in the past was exploited from the surface to a depth of 150 m in the Merse Mine. It is situated along a large normal fault which in the hanging wall has practically impermeable schisto-clayey flysches (Palombini Shales) and cavernous limestone (Upper Trias), characterized by high porosity and transmissivity and in the footwall Phyllite with high fracture permeability. Figure 1 shows the geological cross section of the fault in correspondence to the Merse and Campanio Mines. This ore body is located about 8 km South of geotherma fields which encountered stream at approximately 100 and 700 m in the Triassic formation and at a depth of over 2000 m in the phyllites.

In the Champino mine the water could infiltrate from above, from the permeable structures and the stopes of the old mine workings, and or from underneath, from deep natural steam- bearing or water bearing reservoirs. So far it has been observed that in proximity to both the footwall and the hangingwall of the deposit, water bearing bodies are present which are sometimes recharged by weak inflows and which are dangerous because of the large masses of hot water content and on account of their piezometric heads which exert high pressures on the diaphragms.

In order to reconstruct the geometry of these water bearing bodies, during the drainage, the approximate values of the surfaces of the horizontal cross sections of the cavities were determined at various elevations. The values of mean pieziometric head is given by :-

$$(q_1+q_2)(t_2-t_1)/2(h_1-h_2)$$

Where

q1=	the flow rate of water leaving the cavity
h1=	elevation of the original water level in the cavity
t1 =	time at zero flow rate
q2=	Flow rate at time t ₂
h2=	the elevation of water level at time t_2 .

Tables 1 and 2 show the calculation procedure adopted for Campino mine to obtain these surfcaes and the equivalent diameters of the cavities filled with thermal water at 72 $^{\circ}$ C intersected by two boreholes. Figure 2 shows the maximum horizontal dimensions of the water body. In figure 3, where diameter versus elevations are plotted, the shape of the cavity is roughly determined. These results are slinghtly overestimated due to a weak continous inflow of water in the cavity.

In order to obtain correct representations of cavities it is advisable to carry out very frequent surveys determining flow rates and pressure regimes; the smaller the time intervals at which the water surface elevation is calculated, the closer the reconstructed cavities will be to the real ones.

CONCLUSIONS

The presented here allows us to define at several levels the elevation of the water surfaces. The shape of these sections and the position of the water body can be determined by establishing the parameter of each horizontal section by means of their meeting points with boreholes and (or) with mining stopes. For the programming of future work, in order to avoid dangerous situations, and for the evaluation of possible risks for the existing stopes, it is important know the geometry and position of cavities, because they could also after draining, fill up again with water e.g. the occlusion of the holes, which made the draining possible., or by landslides which could obstruct the water crossing through these boreholes. The experimental method also allows to record possible change in the geometry of a cavity, allowing it to fill up again after draining, and retesting the inflow characteristics during its draining.

ACKNOWLEDEMENTS

The author would like to thank the management of the Campino mine and that of the ENEL, National Geotherman Unit oof Pisa for their kind and active colaboration.